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Abstract: In the present research work, calcium pimelate (CaPim) was synthesized and investigated
as an additive for high-density polyethylene (HDPE). HDPE/CaPim nanocomposites were prepared
by melt-mixing, with CaPim content ranging from 0.1% to 1%, affording white homogeneous materi-
als. The chemical structure of the nanocomposites and the incorporation of CaPim was confirmed
by infrared spectroscopy. The surficial morphology and the additive distribution were examined
by scanning electron microscopy. Differential scanning calorimetry and X-ray diffraction measure-
ments showed that the thermal transitions and crystal structure of HDPE are not affected by the
incorporation of CaPim, while the mechanical properties are retained overall. This study focuses on
the thermal degradation of HDPE nanocomposites, investigating the degradation mechanism and
kinetic parameters through various analytical methods. Isoconversional techniques, including the
Friedman method, Vyazovkin analysis, and Ozawa Flynn Wall analysis, were employed to calculate
activation energies (Eα). The degradation mechanism and kinetic triplet were determined based on a
multivariate non-linear regression method (model-fitting). Finally, the presence of a CaPim additive
was shown to increase the Eα of thermal degradation, consistent with the calculated dependence of
Eα on the degree of conversion and the improved thermal stability of the HDPE matrix.

Keywords: HDPE; calcium pimelate; nanocomposites; thermal stability; isoconversional methods;
thermal degradation kinetics

1. Introduction

High-density polyethylene (HDPE) is one of the most widely used thermoplastics,
due to its inexpensive, lightweight, and durable nature. Its superior processing properties,
along with its chemical resistance, flexibility, and bio-neutrality, allow it to be used for a
variety of applications, such as bottles, food containers, household goods, housewares,
toys, crates and pails, gas tanks for automotive use, etc. Furthermore, HDPE films are often
used as bags and garbage bags in supermarkets [1,2]. HDPE consists of a backbone of sp3

carbon atoms bonded to hydrogen atoms and is probably the simplest polymer in terms of
molecular structure. Thus, not surprisingly, from a kinetic point of view, HDPE is one of
the fastest polymers to crystallize from the melt to a solid state [3–5]. Indeed, nucleation,
chain folding, and crystal growth occur easily at temperatures below the melting point [6].
HDPE optical, mechanical, thermal, and chemical properties are significantly affected by
the crystallization process [7].

A wide variety of additives and nanofillers have been studied for HDPE and poly-
olefins in general, such as inorganic salts and oxides, silicas, clays, fibers, graphene, carbon
nanotubes, etc. [8–14]. Depending on their nature, the fillers can contribute to improving
the mechanical, thermal, optical, magnetic, electrical, and surface wear properties [15].
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It is well-known that fillers, especially at the nanometric scale, can act as heterogeneous
nucleation agents in the polymer matrix, and affect the crystallinity, spherulite size, and
crystal orientation, with further effects on the final polymer properties [16].

Calcium pimelate (CaPim) is an interesting filler that has been developed as a highly
effective and thermally stable β-nucleating agent (β-NA), i.e., a dispersed material that acts
as a local nucleus and promotes heterogeneous nucleation [6,16,17]. CaPim is frequently
used in isotactic polypropylene, inducing the formation of β-crystals, which are thermody-
namically difficult to obtain without the presence of a nucleating agent, while providing a
polymer with superior toughness [18]. CaPim has also been combined with other fillers
to further magnify its results [19]. For example, with graphene, leading improved dis-
persibility in the PP matrix and thus higher nucleation ability [20], or it acts as a supportive
material on TiO2 to promote the degradation of the material [21].

In this context, the present study aims to examine the effects of incorporating small
amounts of CaPim to HDPE. Calcium carbonate has been frequently used [22–24], but
CaPim has been much less studied. Due to the pimelic ion, a higher affinity is expected
with the polyethylene matrix. Compared to PP and due to the faster rate of crystalliza-
tion of HDPE, it is difficult to control nucleation in HDPE; the impact of CaPim on the
properties of HDPE is considerably less documented [6]. In the present work, CaPim was
synthesized and investigated as an additive for HDPE. HDPE/CaPim nanocomposites
containing 0.1%, 0.2%, 0.5%, and 1 wt% of CaPim were prepared via melt-mixing, result-
ing in materials distinguished by their consistent and clearly visible white appearance,
indicating a comprehensive homogenization of the nanocomposite constituents. The mate-
rials were characterized via infrared spectroscopy regarding their chemical structure, their
morphology was examined by scanning electron microscopy (SEM), and their crystallinity
was assessed by X-ray diffraction (XRD). Thermal properties were studied by differential
scanning calorimetry (DSC) and thermogravimetric analysis (TGA), while tensile tests were
performed to assess their mechanical behavior.

2. Materials and Methods
2.1. Materials and Reagents

For CaPim synthesis, calcium hydroxide (Ca(OH)2) 95% and pimelic acid 98% were
supplied by Alfa Aesar (Haverhill, MA, USA). For the nanocomposite preparation, HDPE
LITEN MB 71 (MFR (190/2, 16): 8 g/10 min) was kindly donated by SILON s.r.o. (Sezimovo
Ústí-Planá nad Lužnicí, Czech Republic).

2.2. Calcium Pimelate Synthesis

CaPim, Ca(O2C(CH2)5CO2), was prepared by the neutralization of pimelic acid with
calcium hydroxide [18]. An amount of 3.2 g (20 mmol) of pimelic acid (PA) was dissolved in
20 mL of deionized water and an equimolar amount of calcium hydroxide (Ca(OH)2) was
added (aqueous suspension, 4 mmol/mL). The reacting mixture was left at 40 ◦C under
stirring for 24 h. The formation of a white precipitate was observed. The final product was
separated via filtration, washed with deionized water, and dried in an oven at 60 ◦C under
vacuum. The yield was 78%.

2.3. Preparation of the Nanocomposites

Both the HDPE and the synthesized CaPim were dried in an oven at 60 ◦C under
vacuum overnight in order to remove any traces of humidity. The mixture was compounded
in a Haake–Buchler reomixer (model 600) (Haake–Buchler Instruments Ltd., Saddle Brooke,
NJ, USA) fitted with roller blades and a mixing head of 69 cm3. Melt-mixing was carried
out at 190 ◦C for 20 min. The prepared nanocomposites are listed in the following table
(Table 1).
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Table 1. Formulations of HDPE/CaPim nanocomposites.

Sample HDPE % (w/w) CaPim % (w/w) MFI (g/10 min)

CaPim 0 100 0 6.3
CaPim 0.1 99.9 0.1 15.5
CaPim 0.2 99.8 0.2 19.3
CaPim 0.5 99.5 0.5 19.8
CaPim 1 99 1 29.4

2.4. Characterization Methods
2.4.1. Dynamic Light Scattering (DLS)

DLS was used to evaluate the size of the CaPim particles with the Litesizer 500 particle
analyzer (Anton Paar, Graz, Austria). Prior to analysis, a 10 µL sample of CaPim suspen-
sion was dispersed in 990 µL of water and sonicated for 5 min. All measurements were
performed in triplicate.

2.4.2. Melt Flow Index (MFI)

The melt flow indexes of neat HDPE and composite melts were measured at 190 ◦C,
with a 2.16 kg load according to the ASTM standard D 1238-04 [25] and ISO standard
1133 [26]. A CEAST’s Melt Flow Quick Index meter was utilized (CEAST, Turin, Italy).

2.4.3. Scanning Electron Microscopy (SEM)

Specimens of the composites were prepared, carbon coated to provide good conductiv-
ity, and examined utilizing a JEOL JMS 7610 F (Jeol, Freising, Germany) scanning electron
microscope, operating at 10 kV and fitted with an energy dispersive X-ray (EDX) Oxford
ISIS 300 micro-analytical system (Oxford instruments, Abingdon, UK). Operational param-
eters included an accelerating voltage of 20 kV, a probe current of 45 nA, and a counting
time of 60 s.

2.4.4. Fourier Transform Infrared Spectroscopy (FTIR)—Attenuated Total Reflectance (ATR)

FTIR spectra were recorded on an FTIR-2000, Perkin Elmer, Waltham, MA, USA. An
appropriate amount of sample was grinded with potassium bromide (KBr) and disks were
further formed using a hydraulic press; 32 co-added scans were recorded from 4000 to
450 cm−1, at a 4 cm−1 resolution.

ATR spectra were recorded on an IRTracer-100 (Shimadzu, Kyoto, Japan) fitted with a
QATR™ 10 Single-Reflection ATR Accessory (Shimadzu, Kyoto, Japan) with a diamond
crystal, and 16 co-added scans were collected from 450 to 4000 cm−1 at a resolution of
2 cm−1. Spectra were converted in absorbance mode.

The baseline of all presented spectra was corrected, and spectra were normalized.

2.4.5. Differential Scanning Calorimetry (DSC)

Composite materials were analyzed with a Perkin Elmer Pyris Diamond differential
scanning calorimeter (Solingen, Germany), calibrated with pure indium and zinc standards,
cooling system: PerkinElmer Intracooler 2 (Solingen, Germany). An amount of 5 ± 0.1 mg
of material was sealed in an aluminum pan for the analysis. Thermal history was erased
with a heating scan up to 180 ◦C. Then, samples were cooled to 25 ◦C at 10 ◦C/min and
heated again to 180 ◦C at 10 ◦C/min (second heating scan).

The degree of crystallinity (Xc) of neat HDPE and HDPE nanocomposites was calcu-
lated using the equation:

Xc =

(
∆Hm

∆H0
m

)
×

(
1
w

)
(1)

where ∆Hm is the experimental heat of fusion determined from DSC, ∆H0
m is the theoretical

heat of fusion of the 100% crystalline HDPE (292.6 J/g) [27], and w is the weight fraction of
HDPE in the nanocomposites.
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2.4.6. X-ray Diffraction Analysis (XRD)

For the analysis, nanocomposite films were prepared by compression molding at
190 ◦C, and then cooled at room temperature. XRD diffractograms were collected utilizing
a MiniFlex II XRD system (Rigaku, Co., Tokyo, Japan) with Cu Kα radiation (0.154 nm),
scanning range and rate: 5◦ to 50◦ (2θ) and 1 ◦/min, respectively. Crystallinity (%) was
calculated according to Hay et al. [28] (Equation (2)).

Xc =
Ac

Ac + Aam
× 100% (2)

where Aam is the area of the amorphous halo and Ac is the area of the crystalline peaks.

2.4.7. Polarizing Light Microscopy (PLM)

For PLM observations, a polarizing light microscope (Nikon, Tokyo, Japan, Optiphot-2),
fitted with a Linkam THMS 600 heating stage, a Linkam TP 91 control unit, and a Jenop-
tic ProgRes C10Plus camera with the Jenoptik ProgRes® CapturePro V.2 software, were
utilized. Samples were heated up to 180 ◦C, at 90 ◦C/min, kept at that temperature for
three minutes to ensure that all the HDPE crystals were melted, and then cooled to room
temperature (25 ◦C) at 10 ◦C/min. Spherulite images are captured at around 125 ◦C at
magnification ×40.

2.4.8. Tensile Test

Tensile testing was conducted on a Shimadzu EZ Test Tensile Tester, Model EZ-LX
(Shimadzu, Kyoto, Japan) with a 2 kN load cell and a crosshead speed of 5 mm/min,
in accordance with ASTM D882 [29]. Specimens in a dumbbell shape were cut using a
Wallace cutting press (central portion 5.0 × 0.5 mm thick, gauge length 22 mm). At least
five measurements were conducted per sample, and the average was used to calculate the
mean values of Young’s modulus, tensile strength, and elongation at breakpoint.

2.4.9. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (TGA) of HDPE nanocomposites was conducted using
a SETARAM SETSYS TG-DTA 16/18 instrument, and 6 ± 0.5 mg of each sample was
placed in an appropriate alumina crucible, with an empty crucible serving as a reference.
To account for the buoyancy effect, a blank measurement was carried out and subtracted
from the experimental curve. For the kinetic analysis study [30], HDPE nanocomposites
underwent heating from 25 ◦C to 600 ◦C in a flow of N2 (50 mL/min). The studied heating
rates were 5, 10, 15, and 20 ◦C/min. Sample temperature, sample mass, its first derivative,
and heat flow were continuously recorded. NETZSCH Kinetics Neo software (Version
2.6.7.8) (NETZSCH, Selb, Germany) [31] was employed for the thermal degradation kinetic
analysis of the HDPE nanocomposites.

The explanation of the degradation mechanism in HDPE/CaPim nanocomposites
involved the determination of the degree of conversion (α) and kinetic parameters. To
achieve this, both isoconversional methods and model fitting methods were applied. Mass
curves were recorded at different heating rates (5, 10, 15, and 20 ◦C/min) under a nitrogen
atmosphere [30]. The general equation for solid-state reactions can be employed to express
the rate of the (degradation) reaction:

da
dt

= k(T) f (a) (3)

In this context, k(T) represents the reaction rate constant, f (α) stands for the reaction
model, and α denotes the degree of conversion. The degree of conversion (α) is defined as
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the proportion of the actual mass loss at a specific temperature (∆m) to the total mass loss
(∆mtot), which occurs upon the completion of the degradation process.

α =
m0 − m
m0 − m f

=
∆m

∆mtot
(4)

The algebraic expression f (α) that constitutes the kinetic model delineates the kinetics
of the solid-state reaction. The relationship between temperature and reaction rate is
defined by the Arrhenius equation, k(T) = Ae−E/RT , where E represents the apparent
activation energy (kJ/mol), R is the gas constant (8.314 J/mol·K), A is the pre-exponential
factor (s−1), and T is the absolute temperature (K).

Isoconversional methods are categorized into differential and integral methods, with
the commonly employed ones being the differential isoconversional method by Fried-
man [32], the integral isoconversional method by Vyazovkin [33], and the integral isocon-
versional method of Ozawa, Flynn, and Wall (OFW) [34].

Friedman’s differential isoconversional method:

ln

[
βi

(
da
dt

)
a,i

]
= ln[ f (a)Aa]−

Ea

RTa,i
(5)

where A represents the pre-exponential factor, and β signifies the heating rate. To derive
the activation energy (E) values for a constant conversion function, one must compute
the slope of the straight lines from the plot ln[βi(dα/dt)α ,i] against 1/Tα ,i. Differential
methods are advantageous as approximations are avoided and can be applied to any
temperature program. However, their accuracy is constrained by a determination threshold
on the baseline, and, on occasion, they may exhibit numerical instability in comparison to
integral methods.

Vyazovkin has introduced an isoconversional nonlinear method aimed at calculat-
ing Eα:

Φ(Eα) =
n

∑
i=1

n

∑
j ̸=1

J[Eα, Ti(tα)]

J
[
Eα, Tj(tα)

] (6)

the indices i and j refer to the sets of experiments conducted under varying heating rates,
n represents the total number of experiments, and J is assessed across small intervals of
Eα variation:

J[Eα, Ti(tα)] =

tα∫
tα−∆α

exp
[

−Eα

RTi(t)

]
dt (7)

The Eα value is computed by identifying the minimum of the function Φ(Eα) in
Equation (6). For the calculation of Eα, the time tα ,i and temperature Tα ,i corresponding
to selected α values are determined through precise interpolation using a Lagrangian
algorithm for each temperature program (i-th).

The expression for the Ozawa, Flynn, and Wall equation can be formulated as:

ln(βi) = Const − 1.052
(

Ea

RTa

)
(8)

β = dT/dt = const represents the heating rate, and the index i denotes the various
heating rates applied to the experimental data. The activation energy (Ea) values can be
determined from the slope of the ln(βi) versus 1/Tα plots.

3. Results and Discussion
3.1. Synthesis and Structural Characterization of HDPE/CaPim Nanocomposites

CaPim was synthesized by the neutralization of pimelic acid by calcium hydroxide
and isolated as a white solid, after precipitation and filtration, in 78% yield. According to
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DLS results, the average size of the CaPim particles was 0.63 ± 0.01 µm. In SEM analysis,
platelets are observed for neat CaPim (Figure 1F). Four HDPE CaPim nanocomposites with
a CaPim content ranging from 0.1% to 1% were prepared at 190 ◦C, by melt-mixing, which
is a simple and cost-effective method. The obtained materials were white. Smooth surfaces
with well distributed, round-shaped particles were observed by SEM (Figure 1A–E). Melt
flow index (MFI) was measured (Table 1), and a decreasing trend in the melt viscosity of
the nanocomposites is observed.
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Figure 1. SEM photographs of CaPim and HDPE CaPim nanocomposites at different magnifica-
tions: (A1,A2) CaPim 0 (neat HDPE), (B1,B2) CaPim 0.1, (C1,C2) CaPim 0.2, (D1,D2) CaPim 0.5,
(E1,E2) CaPim 1, and (F1,F2) CaPim filler. The arrows indicate CaPim particles.

The FTIR spectra of CaPim and the synthesized nanocomposites are presented in
Figure 2. CaPim presents a low intensity, broad peak at 3550–3350 cm−1 attributed to the O-
H bonds of remaining humidity traces [35]. The absorbance at 2950–2850 cm−1 arises from
the C-H stretching vibration of the aliphatic chains of pimelate ion (-(CH2)5-) [36]. Very
characteristically, the double peak observed at 1579 and 1540 cm−1 can be associated with
the symmetric stretching vibration of the C(O)O− group, while the absorbance detected at
1469 and 1417 cm−1 corresponds to its asymmetric stretching vibration [35]. Regarding the
nanocomposites, the main absorbance peaks are attributed to the HDPE matrix, the broad
peak centered at 2900–2800 cm−1 is attributed to the asymmetric and symmetric stretching
vibrations of the C-H bonds, and the strong absorbance at 1460 cm−1 corresponds to the
CH2 asymmetric changing angle vibration, while the absorbance at 720 cm−1 arises from the
CH2 methylene in-plane vibration [36–38]. Due to the low CaPim content, the characteristic
absorbance bands are mostly not detectable; nevertheless, when the additive content
reached 0.5% and 1%, the absorbances originating from the C(O)O− group stretching
vibrations of the pimelate ion were observable at 1570 and 1540 cm−1. No specific shifting
of the absorbance bands is observed; therefore, no or few interactions between CaPim and
HDPE are expected.
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3.2. Thermal Properties and Crystallinity

The DSC results, after erasing the thermal history, are presented in Figure 3A and
Table 2. No significant shift in the melting (135 ◦C) and crystallization (116 ◦C) temperatures
are observed due to the presence of CaPim. The observed uniformity in the melting temper-
ature and crystallization temperature provides additional confirmation and substantiates
the results derived from the FTIR analysis.
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Table 2. DSC and XRD data of HDPE and the HDPE nanocomposites.

Sample Tm (◦C) Tc (◦C) ∆H (J/g) Xc (%) DSC Xc (%) XRD

CaPim 0 135.0 116.0 215.5 74 76
CaPim 0.1 134.4 115.5 188.9 65 79
CaPim 0.2 135.0 115.7 171.3 59 78
CaPim 0.5 134.7 115.5 186.0 64 77
CaPim 1 134.7 116.6 161.6 56 78

Regarding the XRD patterns presented below (Figure 3B), three diffraction peaks for
HDPE are observed from 20◦ to 30◦, corresponding to the orthorhombic phase, that agree
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with the literature [39]. The addition of CaPim did not cause any shifts in the diffractive
peaks, which indicates that the crystalline structure of HDPE is not affected by the addition
of CaPim, suggesting that interactions at the molecular level do not occur [15].

The DSC calculations yielded a crystallinity value of 74%, aligning closely with the
XRD results, which indicated a crystallinity of 76%. Shafiei et al. [40] determined a sub-
stantial level of crystallinity (74.23%) for neat HDPE through XRD calculations. The DSC
calculations reveal a decrease in the crystallinity of the HDPE/GNPs nanocomposites in
comparison to neat HDPE. However, the XRD analysis indicates an increase in crystallinity
with the addition of the CaPim filler. In a previous work from our research team on HDPE
graphene nanocomposites [41], higher crystallinity values were observed using XRD, likely
attributed to the highly crystalline nature of graphene, while conventional DSC yielded
lower values, emphasizing the necessity to consider simultaneous melting and recrystalliza-
tion during heating for accurate crystallinity calculations. Conversely, XRD measurements
indicated a tendency for slightly higher crystallinity values for HDPE/CaPim nanocom-
posites, likely attributed to the crystalline nature of CaPim.

The nanocomposites were further examined by polarizing light microscopy (PLM)
and the spherulite images captured during cooling are presented below (Figure 4, 125 ◦C,
magnification ×40). Regarding neat HDPE, well-organized spherulites are generally ob-
served [41–44]. In the case of nanocomposites, the ones with the lowest CaPim contents
exhibit few and small crystallites. As CaPim content increases, bigger crystallites are
formed. In the nanocomposites with 0.5% and 1% of CaPim (Figure 4D,E), higher quality
crystallites are observed compared to neat HDPE (CaPim 0).
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Figure 4. PLM images of HDPE (A) and its nanocomposites with 0.1–1% CaPim (B–E) at 125 ◦C.

Overall, it would seem that CaPim particles do not act as typical nucleating agents in
the present HDPE nanocomposites. In the present study, the degree of crystallinity of the
nanocomposites as calculated by DSC results is indeed lower than in neat HDPE. However,
PLM observations and XRD measurements indicate the formation of bigger crystallites
within a comparable timeframe, particularly evident in nanocomposites with 0.5% and
1% of CaPim. MFI measurements indicate a decreasing melt viscosity with increasing
CaPim content, which could contribute to a higher chain mobility and thus would allow
the formation of bigger crystallites.
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3.3. Mechanical Behavior

The results from the tensile test are presented in Figure 5. Stress at break and Young’s
modulus are retained, but elongation at break decreases compared to neat HDPE. In more
detail, regarding stress at break values, while variations fall within the margin of error,
results seem to suggest an increasing tendency with increasing CaPim content. This can
be ascribed to the incorporation of more rigid nanoparticles in the polymer matrix. In the
case of Young’s modulus, a decreasing trend is observed with increasing CaPim content,
but once more the differences with HDPE are small and within the margin of error. It
can be said that, overall, the behavior of HDPE is retained without property loss. Finally,
concerning elongation at break, CaPim 0.5 showed an improved behavior compared to the
other nanocomposites, but all nanocomposites still exhibit lower performance compared
to HDPE. A decrease in elongation at break is typically observed when a rigid reinforcing
filler is incorporated in a polymeric matrix.
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Figure 5. (a) Stress at break, (b) Young’s modulus, (c) elongation at break of HDPE and its nanocom-
posites with CaPim.

The morphology of the fractured surfaces after tensile testing was observed by SEM
(Figure 6). A smooth surface with a neat fracture is clearly observed for neat HDPE, while
characteristic striations can also be observed [45]. Nanocomposites present a rougher
surface with increasing filler content, and voids and cracks are increasingly detected on
the failure surfaces. A more fibrillated morphology is obvious at the fracture points at low
filler content, but as CaPim content increases the fibrils become shorter, suggesting a more
brittle fracture.
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Figure 6. Fractured surfaces after tensile testing at two different magnifications. (A) Capim 0 (neat
HDPE), (B) CaPim 0.1, (C) CaPim 0.2, (D) CaPim 0.5, and (E) CaPim 1.

3.4. Thermal Stability

Figure 7 illustrates the TGA thermograms and dTG curves for neat HDPE, CaPim
(depicted in the inset), and HDPE CaPim nanocomposites at a heating rate of 20 ◦C/min
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under a nitrogen atmosphere. According to previous studies [46], the decomposition
process of CaPim manifests in three distinct mass loss stages. The mass loss of 38.5%
observed at 145–340 ◦C is attributed to the evaporation of crystalline-bonded water and
organic molecules. The mass loss of 31.1% at 340–500 ◦C is associated with the evaporation
of organic substances, produced by the decomposition of CaPim. The mass loss of 13.2%
at 500–715 ◦C corresponds to the evaporation of CO2 resulting from the decomposition
of CaCO3.
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Figure 7. (a) TGA and (b) dTG curves of CaPim-filled HDPE nanocomposites heated at a rate of
20 ◦C/min in a nitrogen environment.

The TGA curves reveal that both neat HDPE and HDPE CaPim nanocomposites exhibit
commendable thermostability, displaying no significant mass loss until 400 ◦C. Table 3 lists
the specific temperatures for 2.5% and 5% mass loss for each HDPE nanocomposite. The
maximum thermal degradation temperatures (Td,max) of HDPE CaPim nanocomposites
were increased, indicating a notable improvement in their thermal stability. When the
amount of CaPim in the HDPE nanocomposites increases, so does the residual level at
600 ◦C. It is notable that the CaPim 1 nanocomposite shows the highest rate of breakdown
at 503.1 ◦C when the dTG curves are analyzed.

Table 3. TGA results of studied samples. T2.5 and T5 are the temperatures where 2.5% and 5% mass
loss are observed. Td,max is the temperature where the maximum degradation rate is reached.

Sample T2.5
(◦C)

T5
(◦C)

Td,max
(◦C)

CaPim 0 438.5 456.2 499.4
CaPim 0.5 439.1 457.4 501.6
CaPim 1 440.0 457.9 503.1

Three iso-conversional approaches, including Friedman’s differential isoconversional
method, Vyazovkin’s integral isoconversional method, and OFW’s integral isoconversional
method, were utilized to compute activation energies [30,31,44,45,47]. Figure 8 illustrates
the Eα values for CaPim 0.5 and CaPim 1 nanocomposites across the degree of conversion
α, employing the aforementioned isoconversional methods. The values calculated using
the Friedman approach and the mean Eα value derived from the TGA curves using the
Vyazovkin method match up nicely. The dependence of Eα in all cases points to a complex
thermal degradation mechanism wherein the early and late stages of degradation kinetics
are regulated by distinct processes. In the first region, the Eα values for CaPim 0.5 and
CaPim 1 nanocomposites exhibit an increase, while they remain nearly constant for higher
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values. The mean Eα values for CaPim 0.5 for α < 0.2 were determined as 203.1, 202.9,
and 208.3 kJ/mol, respectively, based on the Friedman method, Vyazovkin analysis, and
OFW method. Meanwhile, for α > 0.2, these values were 222.1, 228.0, and 226.3 kJ/mol.
Furthermore, the Eα values for the CaPim 1 nanocomposite (α < 0.2) were found to be
208.5, 205.7, and 211.0 kJ/mol for the Friedman method, Vyazovkin analysis, and OFW
method, respectively. For α > 0.1, these values were 235.5, 240.3, and 237.3 kJ/mol. Notably,
the CaPim 0.5 nanocomposite exhibits a lower activation energy than CaPim 1, indicating
that it requires less activation energy for thermal degradation.
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Figure 8. The relationship between Eα and α for CaPim 0.5 and CaPim 1 nanocomposites as
determined by three methods: (a) Friedman, (b) Vyazovkin, and (c) OFW methods.

The model-fitting procedure, which is also referred to as multivariate non-linear re-
gression, was utilized to ascertain the kinetic triplet and the degradation mechanism for
every reaction. This involved comparing the experimental data (across four heating rates)
with theoretical data. Initially, it was believed that a single-step reaction mechanism would
be responsible for the significant mass loss. When there was an inadequate match with the
experimental data, two or more mechanisms were combined. In an earlier study [48], we
determined that, for neat HDPE, the optimal fitting between the experimental and theoreti-
cal results (correlation coefficient of at least 0.9998) is obtained through a combination of the
nth-order reaction mechanism (Fn), f(α) = (1 − α)n, with the mechanism of autocatalysis
n-order (Cn), f (α) = (1 − α)n(1 + KcatX), where Kcat is the autocatalysis rate constant and
X the extent of conversion of the autocatalytic reactions. The first degradation mechanism



Macromol 2024, 4 54

corresponds to a small mass loss, while the main mass loss is associated to the second
degradation mechanism. The combination of Fn–Cn reaction models fits the experimental
data of CaPim 0.5 and CaPim 1 nanocomposites quite well (Figure 9). The values of the
correlation coefficients (R2) were 0.99982 and 0.99980 for CaPim 0.5 and CaPim 1 nanocom-
posites, respectively. As a result, there are two phases to the degradation of the two samples
under study: the primary stage of degradation happens at higher temperatures, while
the first stage corresponds to a very minor mass loss. Table 4 provides a summary of
the computed parameters derived from the tested models. The Eα values determined
by isoconversional methods, and the two-step mechanism model’s computations agree
well (Figure 9). The effect of CaPim filler is pronounced, increasing the activation energy
of thermal degradation in agreement with the calculated dependence of E on α and the
thermal stability enhancement of the HDPE matrix (Figure 7). The pre-exponential factor
of CaPim 1 presents a slightly higher value than those of the CaPim 0.5 nanocomposite, in
accordance with the calculated E values. This means that the rate constant of the CaPim 0.5
nanocomposite is larger, accelerating the thermal degradation.
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Figure 9. Mass (%) curves of (a) CaPim 0.5 and (b) CaPim 1 nanocomposites (symbols) and the
corresponding fitting curves with the combination of Fn–Cn reaction models (continuous black lines).

Table 4. Activation energy, pre-exponential factor, and reaction order (n) of HDPE/CaPim nanocom-
posites.

Sample Model Eα /kJmol−1 logA1/s−1 n Log Kcat Contribution R2

CaPim 0.5
Fn 204.1 10.183 0.168 - 0.258

0.99982Cn 223.7 11.738 0.778 1.065 0.742

CaPim 1
Fn 210.5 10.934 0.231 - 0.299

0.99980Cn 236.6 11.956 0.781 1.073 0.701

4. Conclusions

A series of HDPE nanocomposites with nanosized CaPim filler were prepared by melt-
mixing with CaPim content ranging from 0.1% to 1%, and the effect of the incorporation of
the filler into the polymer matrix was studied. The thermal transitions and crystal structure
of HDPE are not significantly affected by the incorporation of CaPim. PLM observations
evidenced the formation of larger crystallites with increasing CaPim content. Mechanical
properties are retained overall. Interestingly, a higher thermal stability is observed with
increasing CaPim content. Isoconversional results depicted a complex degradation mecha-
nism, with distinct processes influencing the early and late stages of degradation kinetics.
CaPim 0.5 exhibited lower activation energy than CaPim 1, indicating its lower energy
requirement for thermal degradation. Model-fitting analysis further confirmed a two-step
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degradation mechanism for the nanocomposites, combining nth-order and autocatalysis
mechanisms. The present work is a preliminary study on HDPE/CaPim nanocompos-
ites. More in-depth studies are in progress, including notably fast scanning calorimetry
experiments to obtain more insights on the effect of CaPim on HDPE crystallization.
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